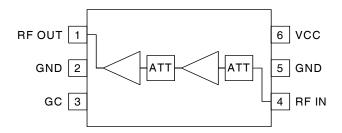
rfmd.com

RF2381

PCS/CELLULAR TDMA/CDMA/W-CDMA LINEAR VARIABLE GAIN AMPLIFIER

RoHS Compliant & Pb-Free Product Package Style: SOT23-6



Features

- 50dB Linear Gain Control Range
- 22dB Maximum Gain
- Single 2.7V to 3.3V Supply
- 35 mA Supply Current
- High Linearity

Applications

- CDMA PCS/Cellular Handsets
- TDMA PCS/Cellular Handsets
- W-CDMA Handsets

Functional Block Diagram

Product Description

The RF2381 is a linear variable gain amplifier suitable for use in TDMA and CDMA systems in the cellular or PCS band and for W-CDMA systems. The features of this device include linear gain control, high gain, and high linearity. The IC is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (GaAs HBT) process and is featured in an industry-standard miniature 6-lead plastic SOT package.

Ordering Information

RF2381 PCS/Cellular TDMA/CDMA/W-CDMA Linear Variable Gain

Amplifie

RF2381PCBA-41X Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

☑ GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	Si CMOS	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	0 to +5.0	V_{DC}
DC Current	100	mA
Operating Ambient Temperature	-30 to +85	°C
Storage Temperature	-40 to +150	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

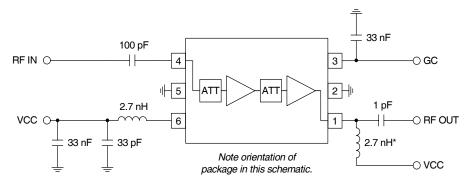
RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification		Heit	Condition	
	Min.	Тур.	Max.	Unit	Condition
Overall					V _{CC} =2.8V, V _{GC} =2.0V, T=25 °C
Usable Frequency Range		800 to 2100		MHz	
Linear Gain Control Range	50			dB	
Gain Control Slope		70		dB/V	
Input VSWR		1.5:1	2.5:1		Over entire gain control range
Output VSWR		1.5:1	2.5:1		Over entire gain control range
Output IP3	+23	+26		dBm	
Noise Figure		9		dB	Maximum gain
TDMA					V _{CC} =2.8V, V _{GC} =2.0V, T=25 °C
Operating Frequency		1880		MHz	
Maximum Small Signal Gain	18	20	22	dB	
Maximum Average Output Power		+8		dBm	TDMA modulation; ACP≤-32dBc
Maximum Average Input Power		-9	-8	dBm	TDMA modulation; for any V _{GC} that gives P _{OUT} ≤+8dBm, ACP≤-32dBc, ALT≤-52dBc
Adjacent Channel Power		-33	-32	dBc	TDMA modulation; $P_{OUT} \le +8 dBm$ and $P_{IN} \le -11 dBm$, at all V_{GC} .
		-61	-52	dBc	TDMA modulation; $P_{OUT} \le +8 dBm$ and $P_{IN} \le -11 dBm$, at all V_{GC} .
CDMA					V _{CC} =2.8V, V _{GC} =2.0V, T=25 °C
Operating Frequency		1880		MHz	
Maximum Small Signal Gain	18	20	22	dB	
Maximum Average Output Power		+6		dBm	CDMA modulation; V _{CC} =3.0V, maximum gain setting, ACP≤-52dBc.
Maximum Average Input Power		-13		dBm	CDMA modulation; for any V _{GC} that gives P _{OUT} ≤+6dBm, ACP≤-52dBc
Adjacent Channel Power		-53		dBc	CDMA modulation; V_{CC} =3.0V. P_{OUT} ≤+6dBm and P_{IN} ≤-13dBm, at all V_{GC} .
W-CDMA					V _{CC} =2.8V, V _{GC} =2.0V, T=25 °C
Operating Frequency		1920 to 1980		MHz	
Small Signal Gain	17.5	19.5	22	dB	
Maximum Linear Output Power		+5		dBm	W-CDMA ACP<-46dBc
Adjacent Channel Power			-46	dBc	W-CDMA modulation; P _{OUT} ≤+5dBm and P _{IN} <-12dBm
			-43	dBc	W-CDMA modulation; Over entire gain control range, P _{IN} <-17 dBm

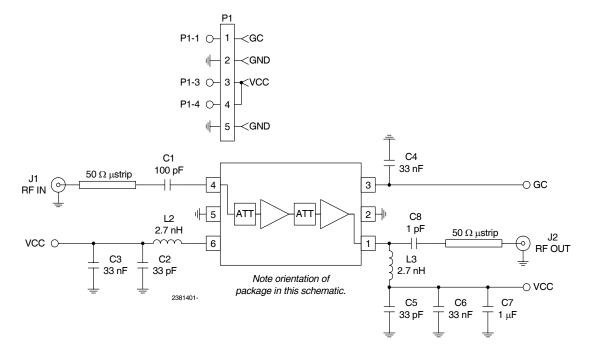
	-43	dBc	W-CDMA modulation; V _{GC} =1.0V, P _{IN} <-14dBm

Parameter		Specification			Condition
	Min.	Тур.	Max.	Unit	Condition
Power Supply					T=25°C
Supply Voltage		2.8		V	Specifications
		2.7 to 3.3		V	Operating range
Gain Control Voltage (V _{GC})		0 to 2.2		V	
Supply Current		35		mA	V _{CC} =2.8V, V _{GC} =2.2V
		50		mA	V _{CC} =3.3V, V _{GC} =2.2V
		21		mA	V _{CC} =2.8V, V _{GC} =0.4V
V _{GC} Current	-2.0		+2.4	mA	V _{GC} =0.4V to 2.2V



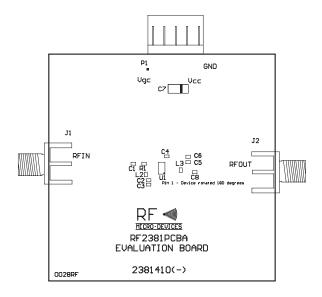
Interface Schematic Pin **Function** Description **RF OUT** RF output pin. This pin is DC-coupled and requires $\ensuremath{\text{V}_{\text{CC}}}$ through a bias 1 inductor sized accordingly to provide a high pass transformation with a series capacitor. Ground connection. For best performance, keep traces physically short 2 **GND** and connect immediately to ground plane. Analog gain control pin. This pin controls the gain of the IC. Minimum gain 3 GC occurs at V_{GC} < 0.4V and maximum gain is achieved with V_{GC} = 2.0V. 50dB of linear gain control with little variation of input P_{1dB} is available. RF input pin. This pin is DC-coupled. **RFIN** 4 5 **GND** Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. 6 **VCC** Power supply. This pin should be connected to a regulated supply and requires a series inductor and bypass capacitor. Voltage is supplied through this pin to the first stage collector; this voltage also controls the bias. Gain may be tuned by adjusting the value of the feed inductor.

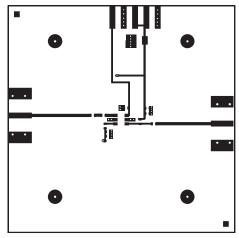
Package Drawing

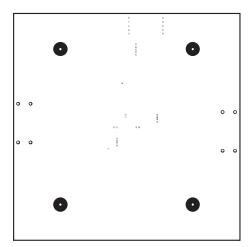


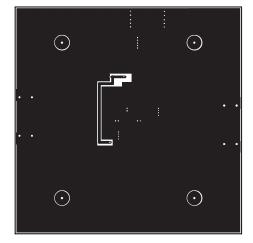
Application Schematic 1850 MHz to 1910 MHz

*For W-CDMA, use 2.2 nH


Evaluation Board Schematic






Evaluation Board Layout Board Size 2.0" x 2.0"

Board Thickness 0.028", Board Material FR-4, Multi-Layer

